Wiki Agenda Contact English version

Koda-Ruskey's algorithm


Auteurs: Jean-Christophe Filliâtre / Mário Pereira

Catégories: Trees

Outils: Why3

see also the index (by topic, by tool, by reference, by year)


Koda-Ruskey's algorithm

Authors: Mário Pereira (Université Paris Sud) Jean-Christophe Filliâtre (CNRS)

module KodaRuskey_Spec

  use map.Map
  use list.List
  use list.Append
  use int.Int

  type color = White | Black

  let eq_color (c1 c2:color) : bool
    ensures { result <-> c1 = c2 }
  = match c1,c2 with
    | White,White | Black,Black -> True
    | _ -> False
    end

  type forest =
    | E
    | N int forest forest

  type coloring = map int color

  function size_forest (f: forest) : int = match f with
    | E -> 0
    | N _ f1 f2 -> 1 + size_forest f1 + size_forest f2
    end

  lemma size_forest_nonneg : forall f.
    size_forest f >= 0

  predicate mem_forest (n: int) (f: forest) = match f with
    | E -> false
    | N i f1 f2 -> i = n || mem_forest n f1 || mem_forest n f2
    end

  predicate between_range_forest (i j: int) (f: forest) =
    forall n. mem_forest n f -> i <= n < j

  predicate disjoint (f1 f2: forest) =
    forall x. mem_forest x f1 -> mem_forest x f2 -> false

  predicate no_repeated_forest (f: forest) = match f with
    | E -> true
    | N i f1 f2 ->
      no_repeated_forest f1 && no_repeated_forest f2 &&
      not (mem_forest i f1) && not (mem_forest i f2) &&
      disjoint f1 f2
    end

  predicate valid_nums_forest (f: forest) (n: int) =
    between_range_forest 0 n f &&
    no_repeated_forest f

  predicate white_forest (f: forest) (c: coloring) = match f with
    | E -> true
    | N i f1 f2 ->
      c[i] = White && white_forest f1 c && white_forest f2 c
  end

  predicate valid_coloring (f: forest) (c: coloring) =
    match f with
    | E -> true
    | N i f1 f2 ->
      valid_coloring f2 c &&
      match c[i] with
      | White -> white_forest f1 c
      | Black -> valid_coloring f1 c
      end
    end

  function count_forest (f: forest) : int = match f with
    | E         -> 1
    | N _ f1 f2 -> (1 + count_forest f1) * count_forest f2
    end

  lemma count_forest_nonneg:
    forall f. count_forest f >= 1

  predicate eq_coloring (n: int) (c1 c2: coloring) =
    forall i. 0 <= i < n -> c1[i] = c2[i]

end

module Lemmas

  use map.Map
  use list.List
  use list.Append
  use int.Int
  use KodaRuskey_Spec

  type stack = list forest

  predicate mem_stack (n: int) (st: stack) = match st with
    | Nil       -> false
    | Cons f tl -> mem_forest n f || mem_stack n tl
    end

  lemma mem_app: forall n st1 [@induction] st2.
    mem_stack n (st1 ++ st2) -> mem_stack n st1 || mem_stack n st2

  function size_stack (st: stack) : int = match st with
    | Nil -> 0
    | Cons f st -> size_forest f + size_stack st
    end

  lemma size_stack_nonneg : forall st.
    size_stack st >= 0

  lemma white_forest_equiv:
    forall f c.
    white_forest f c <-> (forall i. mem_forest i f -> c[i] = White)

  predicate even_forest (f: forest) = match f with
    | E -> false
    | N _ f1 f2 -> not (even_forest f1) || even_forest f2
    end

  predicate final_forest (f: forest) (c: coloring) = match f with
    | E -> true
    | N i f1 f2 ->
      c[i] = Black && final_forest f1 c &&
      if not (even_forest f1) then white_forest f2 c
      else final_forest f2 c
    end

  predicate any_forest (f: forest) (c: coloring) =
    white_forest f c || final_forest f c

  lemma any_forest_frame:
    forall f c1 c2.
    (forall i. mem_forest i f -> c1[i] = c2[i]) ->
    (final_forest f c1 -> final_forest f c2) &&
    (white_forest f c1 -> white_forest f c2)

  predicate unchanged (st: stack) (c1 c2: coloring) =
    forall i. mem_stack i st -> c1[i] = c2[i]

  predicate inverse (st: stack) (c1 c2: coloring) =
    match st with
    | Nil -> true
    | Cons f st' ->
      (white_forest f c1 && final_forest f c2 ||
       final_forest f c1 && white_forest f c2) &&
      if even_forest f then
        unchanged st' c1 c2
      else
        inverse st' c1 c2
    end

  predicate any_stack (st: stack) (c: coloring) = match st with
    | Nil -> true
    | Cons f st -> (white_forest f c || final_forest f c) && any_stack st c
    end

  lemma any_stack_frame:
    forall st c1 c2.
    unchanged st c1 c2 ->
    any_stack st c1 -> any_stack st c2

  lemma inverse_frame:
    forall st c1 c2 c3.
    inverse   st c1 c2 ->
    unchanged st c2 c3 ->
    inverse   st c1 c3

  lemma inverse_frame2:
    forall st c1 c2 c3.
    unchanged st c1 c2 ->
    inverse   st c2 c3 ->
    inverse   st c1 c3

  let lemma inverse_any (st: stack) (c1 c2: coloring)
    requires { any_stack st c1 }
    requires { inverse st c1 c2 }
    ensures  { any_stack st c2 }
  = ()

  lemma inverse_final:
    forall f st c1 c2.
    final_forest f c1 ->
    inverse (Cons f st) c1 c2 ->
    white_forest f c2

  lemma inverse_white:
    forall f st c1 c2.
    white_forest f c1 ->
    inverse (Cons f st) c1 c2 ->
    final_forest f c2

  let lemma white_final_exclusive (f: forest) (c: coloring)
    requires { f <> E }
    ensures  { white_forest f c -> final_forest f c -> false }
  = match f with E -> () | N _ _ _ -> () end

  lemma final_unique:
    forall f c1 c2.
    final_forest f c1 ->
    final_forest f c2 ->
    forall i. mem_forest i f -> c1[i] = c2[i]

  let rec lemma inverse_inverse
    (st: stack) (c1 c2 c3: coloring)
    requires { inverse st c1 c2 }
    requires { inverse st c2 c3 }
    ensures  { unchanged st c1 c3 }
    variant  { st }
  = match st with
    | Nil -> ()
    | Cons E st' -> inverse_inverse st' c1 c2 c3
    | Cons f st' -> if even_forest f then () else inverse_inverse st' c1 c2 c3
    end

  inductive sub stack forest coloring =
  | Sub_reflex:
      forall f, c. sub (Cons f Nil) f c
  | Sub_brother:
      forall st i f1 f2 c.
      sub st f2 c -> sub st (N i f1 f2) c
  | Sub_append:
      forall st i f1 f2 c.
      sub st f1 c -> c[i] = Black ->
      sub (st ++ Cons f2 Nil) (N i f1 f2) c

  lemma sub_not_nil:
    forall st f c. sub st f c -> st <> Nil

  lemma sub_empty:
    forall st f0 c. st <> Nil -> sub (Cons E st) f0 c ->
    sub st f0 c

  lemma sub_mem:
    forall n st f c.
    mem_stack n st -> sub st f c -> mem_forest n f

  lemma sub_weaken1:
    forall st i f1 f2 f0 c.
    sub (Cons (N i f1 f2) st) f0 c ->
    sub (Cons         f2  st) f0 c

  lemma sub_weaken2:
    forall st i f1 f2 f0 c.
    sub (Cons (N i f1 f2) st) f0 c ->
    c[i] = Black ->
    sub (Cons f1 (Cons f2 st)) f0 c

  lemma not_mem_st: forall i f st c.
    not (mem_forest i f) -> sub st f c -> not (mem_stack i st)

  lemma sub_frame:
    forall st f0 c c'.
    no_repeated_forest f0 ->
    (forall i. not (mem_stack i st) -> mem_forest i f0 -> c'[i] = c[i]) ->
    sub st f0 c ->
    sub st f0 c'

  predicate disjoint_stack (f: forest) (st: stack) =
    forall i. mem_forest i f -> mem_stack i st -> false

  lemma sub_no_rep: forall f st' f0 c.
    sub (Cons f st') f0 c ->
    no_repeated_forest f0 ->
    no_repeated_forest f

  lemma sub_no_rep2: forall f st' f0 c.
    sub (Cons f st') f0 c ->
    no_repeated_forest f0 ->
    disjoint_stack f st'

  lemma white_valid: forall f c.
    white_forest f c -> valid_coloring f c

  lemma final_valid: forall f c.
    final_forest f c -> valid_coloring f c

  lemma valid_coloring_frame:
    forall f c1 c2.
    valid_coloring f c1 ->
    (forall i. mem_forest i f -> c2[i] = c1[i]) ->
    valid_coloring f c2

  lemma valid_coloring_set:
    forall f i c.
    valid_coloring f c ->
    not (mem_forest i f) ->
    valid_coloring f c[i <- Black]

  lemma head_and_tail:
    forall f1 f2: 'a, st1 st2: list 'a.
    Cons f1 st1 = st2 ++ Cons f2 Nil ->
    st2 <> Nil ->
    exists st. st1 = st ++ Cons f2 Nil /\ st2 = Cons f1 st

  lemma sub_valid_coloring_f1:
    forall i f1 f2 c i1.
    no_repeated_forest (N i f1 f2) ->
    valid_coloring (N i f1 f2) c ->
    c[i] = Black ->
    mem_forest i1 f1 ->
    valid_coloring f1 c[i1 <- Black] ->
    valid_coloring (N i f1 f2) c[i1 <- Black]

  lemma sub_valid_coloring:
    forall f0 i f1 f2 st c1.
    no_repeated_forest f0 ->
    valid_coloring f0 c1 ->
    sub (Cons (N i f1 f2) st) f0 c1 ->
    valid_coloring f0 c1[i <- Black]

  lemma sub_Cons_N:
    forall f st i f1 f2 c.
    sub (Cons f st) (N i f1 f2) c ->
    f = N i f1 f2 || (exists st'. sub (Cons f st') f1 c) || sub (Cons f st) f2 c

  lemma white_white:
    forall f c i.
    white_forest f c ->
    white_forest f c[i <- White]

  let rec lemma sub_valid_coloring_white
    (f0: forest) (i: int) (f1 f2: forest) (c1: coloring)
    requires { no_repeated_forest f0 }
    requires { valid_coloring f0 c1 }
    requires { white_forest f1 c1 }
    ensures  { forall st. sub (Cons (N i f1 f2) st) f0 c1 ->
               valid_coloring f0 c1[i <- White] }
    variant  { f0 }
  = match f0 with
    | E -> ()
    | N _ f10 f20 ->
       sub_valid_coloring_white f10 i f1 f2 c1;
       sub_valid_coloring_white f20 i f1 f2 c1
    end

  function count_stack (st: stack) : int = match st with
    | Nil        -> 1
    | Cons f st' -> count_forest f * count_stack st'
    end

  lemma count_stack_nonneg:
    forall st. count_stack st >= 1

  use seq.Seq as S

  type visited = S.seq coloring

  predicate stored_solutions
    (f0: forest) (bits: coloring) (st: stack) (v1 v2: visited) =
    let n = size_forest f0 in
    let start = S.length v1 in
    let stop  = S.length v2 in
    stop - start = count_stack st &&
    (forall j. 0 <= j < start ->
      eq_coloring n (S.get v2 j) (S.get v1 j)) &&
    forall j. start <= j < stop ->
      valid_coloring f0 (S.get v2 j) &&
      (forall i. 0 <= i < n -> not (mem_stack i st) ->
        (S.get v2 j)[i] = bits[i]) &&
      forall k. start <= k < stop -> j <> k ->
        not (eq_coloring n (S.get v2 j) (S.get v2 k))

  let lemma stored_trans1
      (f0: forest) (bits1 bits2: coloring) (i: int) (f1 f2: forest) (st: stack)
      (v1 v2 v3: visited)
    requires { valid_nums_forest f0 (size_forest f0) }
    requires { 0 <= i < size_forest f0 }
    requires { forall j. 0 <= j < size_forest f0 ->
               not (mem_stack j (Cons (N i f1 f2) st)) -> bits2[j] = bits1[j] }
    requires { forall j. S.length v1 <= j < S.length v2 ->
               (S.get v2 j)[i] = White }
    requires { forall j. S.length v2 <= j < S.length v3 ->
               (S.get v3 j)[i] = Black }
    requires { stored_solutions f0 bits1 (Cons f2 st) v1 v2 }
    requires { stored_solutions f0 bits2 (Cons f1 (Cons f2 st)) v2 v3 }
    ensures  { stored_solutions f0 bits2 (Cons (N i f1 f2) st) v1 v3 }
  = ()

  let lemma stored_trans2
      (f0: forest) (bits1 bits2: coloring) (i: int) (f1 f2: forest) (st: stack)
      (v1 v2 v3: visited)
    requires { valid_nums_forest f0 (size_forest f0) }
    requires { 0 <= i < size_forest f0 }
    requires { forall j. 0 <= j < size_forest f0 ->
       not (mem_stack j (Cons (N i f1 f2) st)) -> bits2[j] = bits1[j] }
    requires { forall j. S.length v1 <= j < S.length v2 ->
               (S.get v2 j)[i] = Black }
    requires { forall j. S.length v2 <= j < S.length v3 ->
               (S.get v3 j)[i] = White }
    requires { stored_solutions f0 bits1 (Cons f1 (Cons f2 st)) v1 v2 }
    requires { stored_solutions f0 bits2 (Cons f2 st) v2 v3 }
    ensures  { stored_solutions f0 bits2 (Cons (N i f1 f2) st) v1 v3 }
  = ()

end

module KodaRuskey

  use seq.Seq as S
  use list.List
  use KodaRuskey_Spec
  use Lemmas
  use map.Map as M
  use array.Array
  use int.Int
  use ref.Ref

  val ghost map_of_array (a: array 'a) : M.map int 'a
    ensures { result = a.elts }

  val ghost visited: ref visited

  let rec enum (bits: array color) (ghost f0: forest) (st: list forest) : unit
    requires { size_forest f0 = length bits }
    requires { valid_nums_forest f0 (length bits) }
    requires { sub st f0 bits.elts }
    requires { st <> Nil }
    requires { any_stack st bits.elts }
    requires { valid_coloring f0 bits.elts }
    variant  { size_stack st, st }
    ensures  { forall i.
                 not (mem_stack i st) -> bits[i] = (old bits)[i] }
    ensures  { inverse st (old bits).elts bits.elts }
    ensures  { valid_coloring f0 bits.elts }
    ensures  { stored_solutions f0 bits.elts st (old !visited) !visited }
  = match st with
    | Nil ->
        absurd
    | Cons E st' ->
       match st' with
       | Nil ->
           (* that's where we visit the next coloring *)
           assert { valid_coloring f0 bits.elts };
           ghost visited := S.snoc !visited (map_of_array bits);
           ()
       | _ ->
           enum bits f0 st'
       end
    | Cons (N i f1 f2 as f) st' ->
        assert { disjoint_stack f1 st' };
        assert { not (mem_stack i st') };
        let ghost visited1 = !visited in
        if eq_color bits[i] White then begin
          label A in
          enum bits f0 (Cons f2 st');
          assert { sub st f0 bits.elts };
          let ghost bits1 = map_of_array bits in
          let ghost visited2 = !visited in
          label B in
          bits[i] <- Black;
          assert { sub st f0 bits.elts };
          assert { white_forest f1 bits.elts };
          assert { unchanged (Cons f2 st') (bits at B).elts bits.elts};
          assert { inverse (Cons f2 st') (bits at A).elts bits.elts };
          label C in
          enum bits f0 (Cons f1 (Cons f2 st'));
          assert { bits[i] = Black };
          assert { final_forest f1 bits.elts };
          assert { if not (even_forest f1)
                   then inverse (Cons f2 st') (bits at C).elts bits.elts &&
                        white_forest f2 bits.elts
                   else unchanged (Cons f2 st') (bits at C).elts bits.elts &&
                        final_forest f2 bits.elts };
          ghost stored_trans1 f0 bits1 (map_of_array bits)
    i f1 f2 st' visited1 visited2 !visited
        end else begin
          assert { if not (even_forest f1) then white_forest f2 bits.elts
                   else final_forest f2 bits.elts };
          label A in
          enum bits f0 (Cons f1 (Cons f2 st'));
          assert { sub st f0 bits.elts };
          let ghost bits1 = map_of_array bits in
          let ghost visited2 = !visited in
          label B in
          bits[i] <- White;
          assert { unchanged (Cons f1 (Cons f2 st'))
                     (bits at B).elts bits.elts };
          assert { inverse (Cons f1 (Cons f2 st'))
                     (bits at A).elts bits.elts };
          assert { sub st f0 bits.elts };
          assert { if even_forest f1 || even_forest f2
                   then unchanged st' (bits at A).elts bits.elts
                   else inverse st' (bits at A).elts bits.elts };
          enum bits f0 (Cons f2 st');
          assert { bits[i] = White };
          assert { white_forest f  bits.elts };
          ghost stored_trans2 f0 bits1 (map_of_array bits)
    i f1 f2 st' visited1 visited2 !visited
       end
    end

  let main (bits: array color) (f0: forest)
    requires { white_forest f0 bits.elts }
    requires { size_forest f0 = length bits }
    requires { valid_nums_forest f0 (length bits) }
    ensures  { S.length !visited = count_forest f0 }
    ensures  { let n = S.length !visited  in
               forall j. 0 <= j < n ->
                 valid_coloring f0 (S.get !visited j) &&
                 forall k. 0 <= k < n -> j <> k ->
                   not (eq_coloring (length bits)
                         (S.get !visited j) (S.get !visited k)) }
  = visited := S.empty;
    enum bits f0 (Cons f0 Nil)

end

Independently, let's prove that count_forest is indeed the number of colorings.

(* wip
module CountCorrect

  use seq.Seq as S
  use map.Map as M
  use map.Const
  use list.List
  use int.Int
  use KodaRuskey_Spec
  use Lemmas
  use ref.Ref

  predicate id_forest (f: forest) (c1 c2: coloring) =
    forall j. mem_forest j f -> M.get c1 j = M.get c2 j

  (* valid coloring, all white outside of f *)
  predicate solution (f: forest) (c: coloring) =
    valid_coloring f c &&
    forall j. not (mem_forest j f) -> M.get c j = White

  lemma solution_eq:
    forall n f c1 c2.
    valid_nums_forest f n ->
    solution f c1 -> eq_coloring n c1 c2 -> solution f c2

  predicate is_product (i: int) (f1 f2: forest) (c1 c2 r: coloring) =
    solution (N i f1 f2) r &&
    M.get r i = Black &&
    id_forest f1 r c1 &&
    id_forest f2 r c2

  let product (n: int) (i: int) (f1 f2: forest) (c1 c2: coloring) : coloring
    requires { valid_nums_forest (N i f1 f2) n }
    requires { solution f1 c1 }
    requires { solution f2 c2 }
    ensures  { is_product i f1 f2 c1 c2 result }
  = let rec copy (acc: coloring) (f: forest)
      variant { f }
      ensures { forall i. M.get result i =
      	          if mem_forest i f then M.get c2 i else M.get acc i }
    = match f with
      | E -> acc
      | N i2 left2 right2 ->
      	  M.set (copy (copy acc left2) right2) i2 (M.get c2 i2)
      end
    in
    let c = copy c1 f2 in
    M.set c i Black

  lemma solution_product:
    forall n i f1 f2 c1 c2 c.
    valid_nums_forest (N i f1 f2) n ->
    solution f1 c1 -> solution f2 c2 ->
    is_product i f1 f2 c1 c2 c -> solution (N i f1 f2) c

  predicate solutions (n: int) (f: forest) (s: seq coloring) =
     (forall j. 0 <= j < length s -> solution f s[j]) &&
     (* colorings are disjoint *)
     (forall j. 0 <= j < length s ->
      	forall k. 0 <= k < length s -> j <> k ->
	not (eq_coloring n s[j] s[k]))

  let product_all (n: int) (i: int) (f1 f2: forest) (s1 s2: seq coloring)
    : seq coloring
    requires { valid_nums_forest (N i f1 f2) n }
    requires { solutions n f1 s1 }
    requires { solutions n f2 s2 }
    ensures  { solutions n (N i f1 f2) result }
    ensures  { forall j. 0 <= j < length s1 ->
               forall k. 0 <= k < length s2 ->
               is_product i f1 f2 s1[j] s2[k] result[j * length s2 + k] }
    ensures  { length result = length s1 * length s2 }
  = let s = ref empty in
    for j = 0 to length s1 - 1 do
      invariant { length !s = j * length s2 }
      invariant { solutions n (N i f1 f2) !s }
      invariant { forall j' k'. 0 <= j' < j -> 0 <= k' < length s2 ->
                  let c = !s[j' * length s2 + k'] in
                  is_product i f1 f2 s1[j'] s2[k'] c }
      for k = 0 to length s2 - 1 do
        invariant { length !s = j * length s2 + k }
        invariant { solutions n (N i f1 f2) !s }
        invariant { forall j' k'. 0 <= j' < j && 0 <= k' < length s2
                               || j' = j && 0 <= k' < k ->
                    let c = !s[j' * length s2 + k'] in
                    is_product i f1 f2 s1[j'] s2[k'] c }
        let p = product n i f1 f2 s1[j] s2[k] in
        assert { forall l. 0 <= l < length !s ->
                  not (eq_coloring n p !s[l]) };
        s := snoc !s p
      done
    done;
    !s

  lemma solution_white_or_black:
    forall n i f1 f2 c.
    valid_nums_forest (N i f1 f2) n ->
    solution (N i f1 f2) c ->
    match M.get c i with
    | White -> solution f2 c
    | Black -> exists c1 c2. is_product i f1 f2 c1 c2 c &&
                             solution f1 c1 && solution f2 c2
    end

  let rec enum (n: int) (f: forest) : seq coloring
    requires { valid_nums_forest f n }
    ensures  { length result = count_forest f }
    ensures  { solutions n f result }
    ensures  { forall c. solution f c <->
                 exists j. 0 <= j < length result && eq_coloring n c result[j] }
    variant  { f }
  = match f with
    | E ->
        cons (const White) empty
    | N i f1 f2 ->
        let s1 = enum n f1 in
        let s2 = enum n f2 in
        s2 ++ product_all n i f1 f2 s1 s2
   end

end
*)

download ZIP archive

Why3 Proof Results for Project "koda_ruskey"

Theory "koda_ruskey.KodaRuskey_Spec": fully verified

ObligationsAlt-Ergo 2.3.3CVC4 1.8
VC for eq_color0.000.03
size_forest_nonneg------
induction_ty_lex
size_forest_nonneg.00.000.03
count_forest_nonneg------
induction_ty_lex
count_forest_nonneg.00.010.05

Theory "koda_ruskey.Lemmas": fully verified

ObligationsAlt-Ergo 2.3.3CVC3 2.4.1CVC4 1.8CVC5 1.0.5
mem_app------------
induction_ty_lex
mem_app.00.01---0.06---
size_stack_nonneg------------
induction_ty_lex
size_stack_nonneg.00.01---0.06---
white_forest_equiv------------
induction_ty_lex
white_forest_equiv.00.02---0.06---
any_forest_frame------------
induction_ty_lex
any_forest_frame.00.04---0.11---
any_stack_frame------------
induction_ty_lex
any_stack_frame.0------------
split_vc
any_stack_frame.0.00.00---0.05---
any_stack_frame.0.1------------
compute_in_goal
any_stack_frame.0.1.0------------
split_vc
any_stack_frame.0.1.0.00.02---0.07---
any_stack_frame.0.1.0.1---0.08------
inverse_frame------------
induction_ty_lex
inverse_frame.00.05---------
inverse_frame2------------
induction_ty_lex
inverse_frame2.00.05---------
VC for inverse_any------------
induction_ty_lex
VC for inverse_any0.02---0.05---
inverse_final0.15---------
inverse_white0.01---0.06---
VC for white_final_exclusive0.02---------
final_unique------------
induction_ty_lex
final_unique.00.04---0.07---
VC for inverse_inverse0.32---0.45---
sub_not_nil------------
induction_pr
sub_not_nil.00.02---0.06---
sub_not_nil.10.01---0.04---
sub_not_nil.20.02---0.08---
sub_empty------------
induction_pr
sub_empty.00.01---0.07---
sub_empty.10.02---0.07---
sub_empty.2------0.15---
sub_mem------------
induction_pr
sub_mem.00.02---0.06---
sub_mem.10.01---0.05---
sub_mem.20.03---0.07---
sub_weaken1------------
induction_pr
sub_weaken1.00.04---0.08---
sub_weaken1.10.02---0.06---
sub_weaken1.2------0.16---
sub_weaken2------------
induction_pr
sub_weaken2.0------0.10---
sub_weaken2.10.02---0.06---
sub_weaken2.2------0.27---
not_mem_st------------
induction_pr
not_mem_st.00.02---0.07---
not_mem_st.10.02---0.05---
not_mem_st.20.03---0.08---
sub_frame------------
induction_pr
sub_frame.00.01---0.06---
sub_frame.10.05---0.07---
sub_frame.2------0.13---
sub_no_rep------------
induction_pr
sub_no_rep.00.02---0.06---
sub_no_rep.10.02---0.06---
sub_no_rep.2------0.11---
sub_no_rep2------------
induction_pr
sub_no_rep2.00.01---0.06---
sub_no_rep2.10.01---0.06---
sub_no_rep2.2---------0.32
white_valid------------
induction_ty_lex
white_valid.00.02---0.06---
final_valid------------
induction_ty_lex
final_valid.00.02---0.07---
valid_coloring_frame------------
induction_ty_lex
valid_coloring_frame.00.08---0.10---
valid_coloring_set------------
induction_ty_lex
valid_coloring_set.00.02---0.07---
head_and_tail------------
induction_ty_lex
head_and_tail.00.02---0.08---
sub_valid_coloring_f10.04---0.07---
sub_valid_coloring------------
induction_pr
sub_valid_coloring.00.04---0.08---
sub_valid_coloring.1------------
split_vc
sub_valid_coloring.1.0------------
compute_in_goal
sub_valid_coloring.1.0.0------------
split_vc
sub_valid_coloring.1.0.0.00.16---0.16---
sub_valid_coloring.1.0.0.1---2.29------
sub_valid_coloring.1.0.0.2---1.76------
sub_valid_coloring.20.32---------
sub_Cons_N------------
induction_pr
sub_Cons_N.00.02---0.08---
sub_Cons_N.10.02---0.07---
sub_Cons_N.20.08---0.08---
white_white0.02---0.07---
VC for sub_valid_coloring_white------------
split_vc
variant decrease0.03---0.07---
precondition0.01---0.05---
precondition0.02---0.07---
precondition0.01---0.04---
variant decrease0.03---0.08---
precondition0.02---0.06---
precondition0.01---0.06---
precondition0.01---0.04---
postcondition------------
compute_in_goal
postcondition------------
split_vc
postcondition---3.50------
postcondition0.76---------
postcondition---2.99------
count_stack_nonneg------------
induction_ty_lex
count_stack_nonneg.00.02---0.09---
VC for stored_trans10.42---------
VC for stored_trans20.40---------

Theory "koda_ruskey.KodaRuskey": fully verified

ObligationsAlt-Ergo 2.3.3CVC4 1.8Eprover 2.0
VC for enum---------
split_goal_right
unreachable point0.020.08---
assertion0.020.07---
postcondition0.010.06---
postcondition0.040.14---
postcondition0.020.08---
postcondition0.06------
variant decrease0.050.11---
precondition0.020.08---
precondition0.020.08---
precondition0.030.10---
precondition0.030.10---
precondition0.020.11---
precondition0.010.08---
postcondition0.030.12---
postcondition0.040.12---
postcondition0.020.08---
postcondition0.80------
assertion0.420.20---
assertion0.400.22---
index in array bounds------0.48
variant decrease0.060.15---
precondition0.020.07---
precondition0.020.08---
precondition0.030.11---
precondition0.020.08---
precondition0.080.13---
precondition0.020.08---
assertion0.460.26---
index in array bounds------0.50
assertion0.450.36---
assertion---0.580.18
assertion0.410.14---
assertion0.040.11---
variant decrease0.050.13---
precondition0.020.10---
precondition0.020.09---
precondition0.040.10---
precondition0.020.07---
precondition0.160.14---
precondition0.040.12---
assertion0.290.15---
assertion0.040.10---
assertion1.090.16---
precondition0.020.10---
precondition------0.62
precondition1.970.28---
precondition1.080.22---
precondition1.130.22---
precondition0.020.09---
precondition0.020.09---
postcondition1.420.92---
postcondition---0.74---
postcondition0.020.07---
postcondition0.020.08---
assertion0.100.12---
variant decrease0.050.12---
precondition0.020.08---
precondition0.020.07---
precondition0.040.11---
precondition0.020.07---
precondition0.170.13---
precondition0.020.08---
assertion---0.30---
index in array bounds---5.370.40
assertion4.700.17---
assertion0.040.10---
assertion4.130.28---
assertion3.170.73---
variant decrease0.220.18---
precondition0.020.11---
precondition0.020.10---
precondition0.040.10---
precondition0.020.07---
precondition1.740.22---
precondition0.480.15---
assertion0.290.15---
assertion---2.13---
precondition0.020.11---
precondition------0.68
precondition2.260.22---
precondition---0.21---
precondition1.800.23---
precondition0.020.09---
precondition0.030.09---
postcondition---0.22---
postcondition---0.67---
postcondition0.020.08---
postcondition0.020.08---
VC for main0.06------