Wiki Agenda Contact English version

Minimum excludant (aka mex)

find the smallest nonnegative integer that does not belong to an array


Auteurs: Jean-Christophe Filliâtre

Catégories: Array Data Structure / Algorithms

Outils: Why3

see also the index (by topic, by tool, by reference, by year)


Minimum excludant, aka mex

Author: Jean-Christophe FilliĆ¢tre (CNRS)

Given a finite set of integers, find the smallest nonnegative integer that does not belong to this set.

In the following, the set is given as an array A. If N is the size of this array, it is clear that we have 0 <= mex <= N for we cannot have the N+1 first natural numbers in the N cells of array A (pigeon hole principle).

module MexArray

A simple algorithm is thus to mark values that belong to [0..N[ in some external Boolean array of length N, ignoring any value that is negative or greater or equal than N. Then a second loop scans the marks until we find some unused value. If don't find any, then it means that A contains exactly the integers 0,...,N-1 and the answer is N.

The very last step in this reasoning requires to invoke the pigeon hole principle (imported from the standard library).

Time O(N) and space O(N).

  use int.Int
  use map.Map
  use array.Array
  use ref.Refint
  use pigeon.Pigeonhole

  predicate mem (x: int) (a: array int) =
    exists i. 0 <= i < length a && a[i] = x

  let mex (a: array int) : int
    ensures { 0 <= result <= length a }
    ensures { not (mem result a) }
    ensures { forall x. 0 <= x < result -> mem x a }
  = let n = length a in
    let used = make n false in
    let ghost idx = ref (fun i -> i) in (* the position of each marked value *)
    for i = 0 to n - 1 do
      invariant { forall x. 0 <= x < n -> used[x] ->
                    mem x a && 0 <= !idx x < n && a[!idx x] = x }
      invariant { forall j. 0 <= j < i -> 0 <= a[j] < n ->
                    used[a[j]] && 0 <= !idx a[j] < n && a[!idx a[j]] = a[j] }
      let x = a[i] in
      if 0 <= x && x < n then begin used[x] <- true; idx := set !idx x i end
    done;
    let r = ref 0 in
    let ghost posn = ref (-1) in
    while !r < n && used[!r] do
      invariant { 0 <= !r <= n }
      invariant { forall j. 0 <= j < !r -> used[j] && 0 <= !idx j < n }
      invariant { if !posn >= 0 then 0 <= !posn < n && a[!posn] = n
                                else forall j. 0 <= j < !r -> a[j] <> n }
      variant   { n - !r }
      if a[!r] = n then posn := !r;
      incr r
    done;
    (* we cannot have !r=n (all values marked) and !posn>=0 at the same time *)
    if !r = n && !posn >= 0 then pigeonhole (n+1) n (set !idx n !posn);
    !r

end

module MexArrayInPlace

In this second implementation, we assume we are free to mutate array A.

The idea is then to scan the array from left to right, while swapping elements to put any value in 0..N-1 at its place in the array. When we are done, a second loop looks for the mex, advancing as long as a[i]=i holds.

Since we perform only swaps, it is obvious that the mex of the final array is equal to the mex of the original array.

Time O(N) and space O(1). The argument for a linear time complexity is as follows: whenever we do not advance, we swap the element to its place, which is further and did not contain that element; so we can do this only N times.

Surprinsingly, proving that N is the answer whenever array A contains a permutation of 0..N-1 is now easy (no need for a pigeon hole principle or any kind of proof by induction).

  use int.Int
  use int.NumOf
  use array.Array
  use array.ArraySwap
  use ref.Refint

  predicate mem (x: int) (a: array int) =
    exists i. 0 <= i < length a && a[i] = x

  function placed (a: array int) : int -> bool =
    fun i -> a[i] = i

  let mex (a: array int) : int
    ensures { 0 <= result <= length a }
    ensures { not (mem result (old a)) }
    ensures { forall x. 0 <= x < result -> mem x (old a) }
  = let n = length a in
    let i = ref 0 in
    while !i < n do
      invariant { 0 <= !i <= n }
      invariant { forall x. mem x a <-> mem x (old a) }
      invariant { forall j. 0 <= j < !i -> 0 <= a[j] < n -> a[a[j]] = a[j] }
      variant   { n - !i, n - numof (placed a) 0 n }
      let x = a[!i] in
      if x < 0 || x >= n then
        incr i
      else if x < !i then begin
        swap a !i x; incr i
      end else if a[x] = x then
        incr i
      else
        swap a !i x
    done;
    assert { forall j. 0 <= j < n -> let x = (old a)[j] in
             0 <= x < n -> a[x] = x };
    for i = 0 to n - 1 do
      invariant { forall j. 0 <= j < i -> a[j] = j }
      if a[i] <> i then return i
    done;
    n

end


download ZIP archive

Why3 Proof Results for Project "mex"

Theory "mex.MexArray": fully verified

ObligationsCVC4 1.5Z3 4.12.2
VC for mex------
split_vc
array creation size0.02---
loop invariant init0.01---
loop invariant init0.02---
index in array bounds0.01---
index in array bounds0.02---
loop invariant preservation---0.01
loop invariant preservation---0.01
loop invariant preservation---0.01
loop invariant preservation---0.01
loop invariant init0.01---
loop invariant init0.01---
loop invariant init0.01---
index in array bounds0.02---
index in array bounds0.02---
loop variant decrease0.01---
loop invariant preservation0.02---
loop invariant preservation0.05---
loop invariant preservation0.02---
loop variant decrease0.01---
loop invariant preservation0.02---
loop invariant preservation0.02---
loop invariant preservation0.04---
precondition0.01---
precondition0.02---
postcondition0.01---
postcondition---0.01
postcondition0.02---
out of loop bounds0.01---

Theory "mex.MexArrayInPlace": fully verified

ObligationsAlt-Ergo 2.4.1CVC4 1.5Z3 4.12.2
VC for mex---------
split_vc
loop invariant init---0.03---
loop invariant init---0.01---
loop invariant init---------
split_all_full
loop invariant init---0.01---
index in array bounds---0.01---
loop variant decrease---0.02---
loop invariant preservation---0.04---
loop invariant preservation---0.02---
loop invariant preservation------0.01
precondition---0.03---
loop variant decrease---0.03---
loop invariant preservation---0.03---
loop invariant preservation---0.22---
loop invariant preservation---------
split_all_full
loop invariant preservation------0.02
index in array bounds---0.02---
loop variant decrease---0.02---
loop invariant preservation---0.04---
loop invariant preservation---0.03---
loop invariant preservation---0.04---
precondition---0.03---
loop variant decrease---0.30---
loop invariant preservation---0.02---
loop invariant preservation---0.15---
loop invariant preservation---0.09---
assertion0.04------
loop invariant init---0.00---
index in array bounds---0.02---
postcondition---0.01---
postcondition---0.03---
postcondition---------
assert (mem x a)
asserted formula---------
assert (a[x] = x)
asserted formula---0.02---
asserted formula---0.02---
postcondition---0.02---
loop invariant preservation---0.03---
postcondition---0.03---
postcondition---0.03---
postcondition---------
assert (mem x a)
asserted formula---------
assert (a[x] = x)
asserted formula---0.03---
asserted formula---0.03---
postcondition---0.02---
out of loop bounds---0.02---