Wiki Agenda Contact Version française

Space-Saving Algorithm

Online algorithm to find out frequent elements in a data stream


Authors: Jean-Christophe Filliâtre

Topics: Array Data Structure / Historical examples

see also the index (by topic, by tool, by reference, by year)


Space-Saving Algorithm

This is an online algorithm to find out frequent elements in a data stream. Say we want to detect an element occurring more than N/2 times in a stream of N elements. We maintain two values (x1 and x2) and two counters (n1 and n2). If the next value is x1 or x2, we increment the corresponding counter. Otherwise, we replace the value with the smallest counter with the next value, *and we increment the corresponding counter*. If the stream contains a value occurring more than N/2 times, it is guaranteed to be either x1 or x2.

This generalizes to k values being monitored.

The algorithm is described here:

Metwally, A., Agrawal, D., El Abbadi, A. Efficient Computation of Frequent and Top-k Elements in Data Streams. ICDT 2005. LNCS vol 3363.

See also mjrty.mlw for a related algorithm.

Author: Jean-Christophe FilliĆ¢tre (CNRS)

use int.Int
use int.MinMax
use map.Occ

type elt

The elements of the stream. The only thing we can do is to test elements for equality.

val (=) (x y: elt) : bool
  ensures { result <-> x = y }

val constant dummy: elt

We introduce a dummy value in order to initialize variables in the code.

val ghost s: int -> elt
  ensures { forall i. result i <> dummy }

We model an online algorithm with a stream s of elements and a function next to get the next element from the stream. The reference n is the number of elements retrieved so far.

val ghost ref n: int

val next () : elt
  requires { n >= 0 }
  writes   { n }
  ensures  { n = old n + 1 }
  ensures  { result = s (old n) <> dummy }

Let us start gently with k=2 values monitored.

let space_saving_2 () : unit
  requires { n = 0 }
  diverges
= let ref x1 = dummy in
  let ref n1 = 0 in
  let ref x2 = dummy in
  let ref n2 = 0 in
  while true do
    invariant { n1 + n2 = n >= 0 }
    invariant { 0 <= occ x1 s 0 n <= n1 }
    invariant { 0 <= occ x2 s 0 n <= n2 }
    invariant { if n1 = 0 then x1 = dummy else x1 <> dummy }
    invariant { if n2 = 0 then x2 = dummy else x2 <> dummy }
    invariant { n1 > 0 -> n2 > 0 -> x1 <> x2 }
    invariant { forall y. y <> x1 -> y <> x2 -> occ y s 0 n <= min n1 n2 }
    (* 1. We show that the desired property is a consequence of the
       invariants above: any frequent value v (i.e. occurring strictly
       more than min(n1, n2) times) is either x1 or x2. *)
    assert { [@expl:thm] forall v. occ v s 0 n > min n1 n2 -> v = x1 || v = x2 };
    (* and beside, we have min(n1, n2) <= n/2 (from the first invariant)
       so any value occurring >n/2 times is either x1 or x2. *)
    assert { [@expl:thm] forall v. 2 * occ v s 0 n > n -> v = x1 || v = x2 };
    (* 2. Read the next value and update the state. *)
    let x = next () in
    if x = x1 then n1 <- n1 + 1
    else if x = x2 then n2 <- n2 + 1
    else if n1 <= n2 then (x1 <- x; n1 <- n1 + 1)
                     else (x2 <- x; n2 <- n2 + 1)
  done

Note: for k=2 (i.e. two values monitored), this is less precise than MJRTY (see mjrty.mlw). Indeed, Space-Saving only tells us that a value with more than N/2 occurrences, if any, is either x1 or x2, while MJRTY determines what would be this value.

Now we go for the general case of k values being monitored, for any k >= 2.

use array.Array
use array.ArraySum

let function minimum (a: array int) : (m: int)
  requires { length a > 0 }
  ensures  { 0 <= m < length a }
  ensures  { forall i. 0 <= i < length a -> a[m] <= a[i] }
= let ref m = 0 in
  for i = 1 to length a - 1 do
    invariant { 0 <= m < length a }
    invariant { forall j. 0 <= j < i -> a[m] <= a[j] }
    if a[i] < a[m] then m <- i
  done;
  return m

The index for the minimum value of a non-empty array.

predicate occurs (v: elt) (a: array elt) =
  exists i. 0 <= i < length a /\ v = a[i]

let increment (ghost k: int) (c: array int) (i: int) (ghost n: int) : unit
  requires { 0 <= i < length c = k }
  requires { sum c 0 k = n - 1 }
  ensures  { c[i] = old c[i] + 1 }
  ensures  { forall j. 0 <= j < k -> j <> i -> c[j] = old c[j] }
  ensures  { sum c 0 k = n }
= assert { sum c 0 k = sum c 0 i + sum c i (i+1) + sum c (i+1) k };
  c[i] <- c[i] + 1;
  assert { sum c 0 k = sum c 0 i + sum c i (i+1) + sum c (i+1) k }

It is a bit of a pity that we have to split sums like this to help SMT solvers...

let find (k: int) (x: elt) (e: array elt) : (i: int)
  requires { length e = k }
  ensures  { 0 <= i <= k }
  ensures  { forall j. 0 <= j < i -> e[j] <> x }
  ensures  { i < k -> e[i] = x }
= for i = 0 to k-1 do
    invariant { forall j. 0 <= j < i -> e[j] <> x }
    if e[i] = x then return i
  done;
  return k

Finds x in array e of size k, or returns k if not present.

let lemma minimum_k (k: int) (c: array int) (n: int)
  requires { length c = k >= 2 }
  requires { sum c 0 k = n >= 0 }
  ensures  { k * c[minimum c] <= n }
= let m = minimum c in
  for i = 0 to k - 1 do invariant { i * c[m] <= sum c 0 i } () done

Let us help SMT solvers with non-linear arithmetic.

Space-Saving Algorithm with k values being monitored.

let space_saving_k (k: int) : unit
  requires { k >= 2 }
  requires { n = 0 }
  diverges
= let ref e = Array.make k dummy in
  let ref c = Array.make k 0 in
  while true do
    invariant { sum c 0 k = n >= 0 }
    invariant { forall i. 0 <= i < k -> 0 <= occ e[i] s 0 n <= c[i] }
    invariant { forall i. 0 <= i < k ->
                  if c[i] = 0 then e[i] = dummy else e[i] <> dummy }
    invariant { forall i. 0 <= i < k -> c[i] > 0 ->
                forall j. 0 <= j < k -> c[j] > 0 -> i <> j -> e[i] <> e[j] }
    invariant { forall y. (forall i. 0 <= i < k -> y <> e[i]) ->
                          occ y s 0 n <= c[minimum c] }
    (* 1. We show that the desired property is a consequence of the
       invariants above: any frequent value `v` (i.e. occurring strictly
       more than min(c) times) is in `e`. *)
    assert { [@expl:thm] forall v. occ v s 0 n > c[minimum c] -> occurs v e };
    (* and beside, we have min(c) <= n/k (from the first invariant) *)
    minimum_k k c n;
    (* so any value occurring >n/k times is in `e`. *)
    assert { [@expl:thm] forall v. k * occ v s 0 n > n -> occurs v e
                                by k * occ v s 0 n > k * c[minimum c] };
    (* 2. Read the next value and update the state. *)
    let x = next () in
    let i = find k x e in
    if i < k then
      increment k c i n
    else (
      let m = minimum c in
      e[m] <- x;
      increment k c m n;
    )
  done

download ZIP archive

Why3 Proof Results for Project "space_saving"

Theory "space_saving.Top": fully verified

ObligationsAlt-Ergo 2.4.0CVC4 1.8CVC5 1.0.5Eprover 2.0Z3 4.12.2Z3 4.8.10
VC for space_saving_2------------------
split_vc
loop invariant init---------------0.02
loop invariant init---------------0.03
loop invariant init---------------0.01
loop invariant init---------------0.01
loop invariant init---------------0.01
loop invariant init---------------0.02
loop invariant init---------------0.03
thm---------------0.12
thm---------------0.04
precondition---------------0.01
loop invariant preservation---------------0.03
loop invariant preservation---------------0.05
loop invariant preservation---------------0.05
loop invariant preservation---------------0.03
loop invariant preservation---------------0.02
loop invariant preservation---------------0.04
loop invariant preservation---------------0.02
loop invariant preservation---------------0.03
loop invariant preservation---------------0.04
loop invariant preservation---------------0.05
loop invariant preservation---------------0.02
loop invariant preservation---------------0.03
loop invariant preservation---------------0.01
loop invariant preservation---------------0.02
loop invariant preservation---------------0.03
loop invariant preservation---------------0.05
loop invariant preservation---------------0.06
loop invariant preservation---------------0.02
loop invariant preservation---------------0.02
loop invariant preservation---------------0.02
loop invariant preservation---------------0.10
loop invariant preservation---------------0.03
loop invariant preservation---------------0.04
loop invariant preservation---------------0.05
loop invariant preservation---------------0.02
loop invariant preservation---------------0.04
loop invariant preservation---------------0.02
loop invariant preservation---------------0.08
VC for minimum---------------0.03
VC for increment---0.73------------
split_vc
assertion---------------0.03
index in array bounds---------------0.01
index in array bounds---------------0.01
assertion---------------0.05
postcondition---------------0.03
postcondition---------------0.05
postcondition---------------0.29
VC for find---------------0.02
VC for minimum_k---------------0.02
VC for space_saving_k------------------
split_vc
array creation size---------------0.02
array creation size---------------0.02
loop invariant init---------------0.03
loop invariant init---------------0.03
loop invariant init---------------0.02
loop invariant init---------------0.02
loop invariant init---------------0.03
thm---------------0.03
precondition---------------0.03
precondition---------------0.01
thm------------------
split_vc
thm---------------0.03
VC for space_saving_k------------------
case (occurs v e)
true case---------------0.02
false case------------------
assert (occ v s 0 n <= c[minimum c])
asserted formula---------------0.03
false case------------------
assert (k * occ v s 0 n <= n)
asserted formula---------1.57------
false case---------------0.01
precondition---------------0.01
precondition---------------0.02
precondition---------------0.02
precondition---------------0.02
loop invariant preservation---------------0.02
loop invariant preservation------------------
split_vc
loop invariant preservation---------------0.02
loop invariant preservation------1.50---------
loop invariant preservation------0.14---------
loop invariant preservation0.05---------------
loop invariant preservation------------------
split_vc
loop invariant preservation---0.12------------
precondition---------------0.02
index in array bounds---------------0.03
precondition---------------0.02
precondition---------------0.01
loop invariant preservation---------------0.01
loop invariant preservation------------------
split_vc
loop invariant preservation---0.08------------
loop invariant preservation------------0.41---
loop invariant preservation------0.15---------
loop invariant preservation0.77---------------
loop invariant preservation---2.70------------