Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Thèses et habilitations
Production scientifique
Doctorat de

Doctorat
Equipe : Données et Connaissances Massives et Hétérogènes

Efficient techniques for large-scale Web data management

Début le 08/09/2011
Direction : COLAZZO, Dario
[MANOLESCU Ioana]

Ecole doctorale : ED STIC 580
Etablissement d'inscription : Université Paris-Saclay

Lieu de déroulement : LRI - LEO

Soutenue le 25/09/2014 devant le jury composé de :
Directeur de thèse :
- M. Dario Colazzo, Professeur, Université Paris-Dauphine

Co-encadrante :
- Mme Ioana Manolescu, Directrice de Recherche, Inria et Université Paris-Sud

Examinateurs :
- M. Reza Akbarinia, Chargé de Recherche, Inria et Université Montpellier II
- M. Marc Baboulin, Professeur, Université Paris-Sud et Inria
- M. Philippe Rigaux, Professeur, Conservatoire National des Arts et Métiers

Rapporteur :
- M. Donald Kossmann, Professeur, ETH Zürich

Activités de recherche :

Résumé :
e développement récent des offres commerciales autour du cloud computing a fortement influé sur la recherche et le développement des plateformes de distribution numérique. Les fournisseurs du cloud offrent une infrastructure de distribution extensible qui peut être utilisée pour le stockage et le traitement des données.

En parallèle avec le développement des plates-formes de cloud computing, les modèles de programmation qui parallélisent de manière transparente l'exécution des tâches gourmandes en données sur des machines standards ont suscité un intérêt considérable, à commencer par le modèle MapReduce très connu aujourd'hui puis par d'autres frameworks plus récents et complets. Puisque ces modèles sont de plus en plus utilisés pour exprimer les tâches de traitement de données analytiques, la nécessité se fait ressentir dans l'utilisation des langages de haut niveau qui facilitent la charge de l'écriture des requêtes complexes pour ces systèmes.

Cette thèse porte sur des modèles et techniques d'optimisation pour le traitement efficace de grandes masses de données du Web sur des infrastructures à grande échelle. Plus particulièrement, nous étudions la performance et le coût d'exploitation des services de cloud computing pour construire des entrepôts de données Web ainsi que la parallélisation et l'optimisation des langages de requêtes conçus sur mesure selon les données déclaratives du Web.

Tout d'abord, nous présentons AMADA, une architecture d'entreposage de données Web à grande échelle dans les plateformes commerciales de cloud computing. AMADA opère comme logiciel en tant que service, permettant aux utilisateurs de télécharger, stocker et interroger de grands volumes de données Web. Sachant que les utilisateurs du cloud prennent en charge les coûts monétaires directement liés à leur consommation de ressources, notre objectif n'est pas seulement la minimisation du temps d'exécution des requêtes, mais aussi la minimisation des coûts financiers associés aux traitements de données. Plus précisément, nous étudions l'applicabilité de plusieurs stratégies d'indexation de contenus et nous montrons qu'elles permettent non seulement de réduire le temps d'exécution des requêtes mais aussi, et surtout, de diminuer les coûts monétaires liés à l'exploitation de l'entrepôt basé sur le cloud.

Ensuite, nous étudions la parallélisation efficace de l'exécution de requêtes complexes sur des documents XML mis en œuvre au sein de notre système PAXQuery. Nous fournissons de nouveaux algorithmes montrant comment traduire ces requêtes dans des plans exprimés par le modèle de programmation PACT (PArallelization ConTracts). Ces plans sont ensuite optimisés et exécutés en parallèle par le système Stratosphere. Nous démontrons l'efficacité et l'extensibilité de notre approche à travers des expérimentations sur des centaines de Go de données XML.

Enfin, nous présentons une nouvelle approche pour l'identification et la réutilisation des sous-expressions communes qui surviennent dans les scripts Pig Latin. Notre algorithme, nommé PigReuse, agit sur les représentations algébriques des scripts Pig Latin, identifie les possibilités de fusion des sous-expressions, sélectionne les meilleurs à exécuter en fonction du coût et fusionne d'autres expressions équivalentes pour partager leurs résultats. Nous apportons plusieurs extensions à l'algorithme afin d’améliorer sa performance. Nos résultats expérimentaux démontrent l'efficacité et la rapidité de nos algorithmes basés sur la réutilisation et des stratégies d'optimisation.